首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1723篇
  免费   460篇
  国内免费   1186篇
测绘学   29篇
大气科学   33篇
地球物理   402篇
地质学   2327篇
海洋学   406篇
天文学   11篇
综合类   53篇
自然地理   108篇
  2024年   4篇
  2023年   22篇
  2022年   70篇
  2021年   73篇
  2020年   113篇
  2019年   128篇
  2018年   137篇
  2017年   90篇
  2016年   166篇
  2015年   123篇
  2014年   166篇
  2013年   217篇
  2012年   150篇
  2011年   193篇
  2010年   161篇
  2009年   158篇
  2008年   173篇
  2007年   167篇
  2006年   189篇
  2005年   155篇
  2004年   111篇
  2003年   97篇
  2002年   74篇
  2001年   68篇
  2000年   38篇
  1999年   42篇
  1998年   41篇
  1997年   47篇
  1996年   46篇
  1995年   31篇
  1994年   23篇
  1993年   21篇
  1992年   9篇
  1991年   16篇
  1990年   12篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有3369条查询结果,搜索用时 31 毫秒
51.
目前的景观建筑设计中往往更注重建筑的景观性,而忽略了建筑的安全稳定性,导致景观建筑的整体抗震效果较差,在景观建筑设计中加入挡土墙设计可以有效提高其抗震性。为此,设计一种具有一定抗震性能的景观建筑挡土墙,利用建筑施工过程中保留的复合纤维材料、建筑垃圾以及纤维绳等作为土墙填充物,并加入具有一定抗拉能力的拉筋材料,以保持土墙内部的稳定性。考虑景观建筑通常注重外观视觉效果,使用"平改坡"设计,在墙体表面种植具有一定视觉冲击的植物,增加土墙自重,促进土墙整体结构的稳定性。分析挡土墙后面无限倾斜填土受力状态,选取菱形微小单元体作为研究对象,计算景观建筑的挡土墙土压力强度。实验证明,优化设计的景观建筑挡土墙结构可以有效增强景观建筑的整体抗震能力。  相似文献   
52.
Soil-covered upland landscapes comprise a critical part of the habitable world and our understanding of their evolution as a function of different climatic, tectonic, and geologic regimes is important across a wide range of disciplines. Soil production and transport play essential roles in controlling the spatial variation of soil depth and therefore hillslope hydrological processes, distribution of vegetation, and soil biological activity. Field-based confirmation of the hypothesized relationship between soil thickness and soil production is relatively recent, however, and here we quantify a direct, material strength-based influence on variable soil production across landscapes. We report clear empirical linkages between the shear strength of the parent material (its erodibility) and the overlying soil thickness. Specifically, we use a cone penetrometer and a shear vane to determine saprolite resistance to shear. We find that saprolite shear strength increases systematically with overlying soil thickness across three very different field sites where we previously quantified soil production rates. At these sites, soil production rates, determined from in situ produced beryllium-10 (10Be) and aluminum-26 (26Al), decrease with overlying soil thickness and we therefore infer that the efficiency of soil production must decrease with increasing parent material shear strength. We use our field-based data to help explain the linkages between biogenic processes, chemical weathering, hillslope hydrology, and the evolution of the Earth's surface. © 2019 John Wiley & Sons, Ltd.  相似文献   
53.
朱振兴  杨璐  王法承  方成 《海洋工程》2019,37(4):98-106
为探究轴压作用下双金属复合海底管道的组合作用与承载性能,对双金属复合海底管道进行了试验研究和理论分析。开展了不锈钢衬管材料性能试验,对比了国际主流不锈钢本构关系模型和试验结果。利用ABAQUS建立了精细化的双金属复合管道轴压试验有限元模型,系统研究了关键参数如复合工艺产生的环向复合应力、钢管初始缺陷幅值等对双金属复合管在轴压作用下力学性能的影响规律。通过对比已有轴压双金属复合管道试验结果,验证有限元模型。基于验证的有限元模型,对轴压作用下双金属复合管道的组合作用以及径厚比和材料强度对承载力的影响进行了分析。结果表明双金属复合管道的轴压极限承载力主要取决于基管的截面屈服荷载,并随着管径和材料强度的提高而增大。并依据分析结果对双金属复合海底管道的设计提出建议。  相似文献   
54.
A rapid reduction in sediment porosity from 60 to 70 % at seafloor to less than 10 % at several kilometers depth can play an important role in deformation and seismicity in the shallow portion of subduction zones. We conducted deformation experiments on rocks from an ancient accretionary complex, the Shimanto Belt, across the Nobeoka Thrust to understand the deformation behaviors of rocks along plate boundary faults at seismogenic depth. Our experimental results for phyllites in the hanging wall and shale‐tuff mélanges in the footwall of the Nobeoka Thrust indicate that the Shimanto Belt rocks fail brittlely accompanied by a stress drop at effective pressures < 80 MPa, whereas they exhibit strain hardening at higher effective pressures. The transition from brittle to ductile behavior in the shale–tuff mélanges lies on the same trend in effective stress–porosity space as that for clay‐rich and tuffaceous sediments subducting into the modern Nankai subduction zone. Both the absolute yield strength and the effective pressure at the brittle–ductile transition for the phyllosilicate‐rich materials are much lower than for sandstones. These results suggest that as the clay‐rich or tuffaceous sediments subduct and their porosities are reduced, their deformation behavior gradually transitions from ductile to brittle and their yield strength increases. Our results also suggest that samples of the ancient Shimanto accretionary prism can serve as an analog for underthrust rocks at seismogenic depth in the modern Nankai Trough.  相似文献   
55.
Rivers respond to environmental changes such as climate shifts, land use changes and the construction of hydro‐power dams in a variety of ways. Often there are multiple potential responses to any given change. Traditionally, potential stream channel response has been assessed using simple, qualitative frameworks based largely on professional judgement and field experience, or using some form of regime theory. Regime theory represents an attempt to use a physically based approach to predict the configuration of stable channels that can transport the imposed sediment supply with the available discharge. We review the development of regime theory, and then present a specific regime model that we have created as a stand‐alone computer program, called the UBC Regime Model (UBCRM). UBCRM differs from other regime models in that it constrains its predictions using a bank stability criterion, as well as a pattern stability criterion; it predicts both the stable channel cross‐sectional dimensions as well as the number of anabranches that the stream must have in order to establish a stable channel pattern. UBCRM also differs from other models in that it can be used in a stochastic modelling mode that translates uncertainty in the input variables into uncertainty in the predicted channel characteristics. However, since regime models are fundamentally based on the concept of grade, there are circumstances in which the model does not perform well. We explore the strengths and weaknesses of the UBCRM in this paper, and we attempt to illustrate how the UBCRM can be used to augment the existing qualitative frameworks, and to help guide professionals in their assessments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
56.
This report presents a numerical investigation of the shear behavior of binary mixtures via a two-dimensional discrete element method. The effect of the coarse particle content on the peak shear strength of mixtures is investigated for different contact-type friction coefficients. A detailed analysis on the anisotropies enables us to understand the microscopic mechanisms that result in the dependency of the peak shear strengths on the coarse particle content. The contributions of different contact types to the peak shear strength are quantified. Lastly, the inter-particles structures are examined when the binary mixtures become coarse-particle-supported structures.  相似文献   
57.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   
58.
Particles eroded from hillslopes and exported to rivers are recognized to be composite particles of high internal complexity. Their architecture and composition are known to influence their transport behaviour within the water column relative to discrete particles. To‐date, hillslope erosion studies consider aggregates to be stable once they are detached from the soil matrix. However, lowland rivers and estuaries studies often suggest that particle structure and dynamics are controlled by flocculation within the water column. In order to improve the understanding of particle dynamics along the continuum from hillslopes to the lowland river environment, soil particle behaviour was tested under controlled laboratory conditions. Seven flume erosion and deposition experiments, designed to simulate a natural erosive event, and five shear cell experiments were performed using three contrasting materials: two of them were poorly developed and as such can not be considered as soils, whilst the third one was a calcareous brown soil. These experiments revealed that soil aggregates were prone to disaggregation within the water column and that flocculation may affect their size distribution during transport. Large differences in effective particle size were found between soil types during the rising limb of the bed shear stress sequence. Indeed, at the maximum applied bed shear stress, the aggregated particles median diameter was found to be three times larger for the well‐developed soil than for the two others. Differences were smaller in the falling limb, suggesting that soil aggregates underwent structural changes. However, characterization of particles strength parameters showed that these changes did not fully turn soil aggregates into flocs, but rather into hybrid soil aggregate–floc particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
59.
Conceived as a potential alternative to the classical design methods employed for analyzing the stability of underground structures driven in jointed rocks, the homogenization approach stems from the heuristic idea that, from a macroscopic point of view, a rock mass cut by a network of joints may be perceived as a homogenized continuum. The strength properties of the latter can be theoretically obtained from the failure conditions of its individual constituents: rock matrix and joint interfaces. At the material level, the limit analysis reasoning is used in the context of homogenization to formulate the homogenized strength criterion of a jointed rock mass in the particular situation of a single set of parallel joints. As it could be expected, the obtained closed‐form expressions show the strength anisotropy induced by joint preferential orientation. The support functions (π functions) associated with the homogenized strength criterion are also determined in both plane strain and three‐dimensional cases. This criterion is then applied to the investigation of stability analysis of a tunnel excavated in a jointed rock mass. Upper bounds estimated of the stability factor are derived from the implementation of the kinematic approach directly on the homogenized underground structure. Finally, the approach is applied to analyze and discuss the collapse of the Pinheiros subway station (São Paulo, Brazil). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
60.
The western China lies in the convergence zone between Eurasian and Indian plates. It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth. The lithospheric strength is a key factor in controlling the lithosphere dynamics and deformations. The effective elastic thickness (Te) of the lithosphere can be used to address the lithospheric strength. Previous researchers only used one of the admittance or coherence methods to investigate the Te in the western China. Moreover, most of them ignored the internal loads of the lithosphere during the Te calculation, which can produce large biases in the Te estimations. To provide more reliable Te estimations, we used a new joint inversion method that integrated both admittance and coherence techniques to compute the Te in this study, with the WGM2012 gravity data, the ETOPO1 topographic data, and the Moho depths from the CRUST1.0 model. The internal loads are considered and investigated using the load ratio (F). Our results show that the joint inversion method can yield reliable Te and F values. Based on the analysis of Te and F distributions, we suggest (1) the northern Tibetan Plateau could be the front edge of the plate collision of Eurasian and Indian plates; (2) the southern and part of central Tibetan Plateau have a strong lithospheric mantle related to the rigid underthrusting Indian plate; (3) the southeastern Tibetan Plateau may be experiencing the delamination of lithosphere and upwelling of asthenosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号